Feb 20.

7.2.3, 7.2.14, 7.2.16 B. Give an example of a function  $f: [a,b] \rightarrow \mathbb{R}$ that is in RIC,b] for every  $c \in (a,b)$  but which is not in R[a,b].

$$f(x) = \begin{cases} \frac{1}{(\pi - \alpha)^{S}}, & \pi > \alpha \\ 0, & \pi = \alpha \end{cases}$$
 where  $S > 0$ .

[4. Suppose that 
$$f: [ab] \rightarrow \mathbb{R}$$
, that  $a = G < G < \dots < C_{m} = b$   
and that the restrictions of  $f$  to  $[C_{i1}, C_{i}]$  belong to  $\mathbb{R}[C_{i1}, C_{i}]$   
for  $i = 1, \dots, m$ . Prive that  $f \in \mathbb{R}[a, b]$  and that  $\int_{a}^{b} f = \sum_{i=1}^{m} \int_{C_{i}}^{C_{i}} f$ .  
Priof. Recall Additivity theorem  
lat  $f: [a, b] \rightarrow \mathbb{R}$  and  $kt \in C = (a, b)$ . Then  
 $f \in \mathbb{R}[a, b] \iff f \in \mathbb{R}[a, c]$  and  $f \in \mathbb{R}[c, b]$ .  
To this are,  $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$   
Prive by induction using additivity theorem.  
(DIF  $M = 1$ , then  $14$  chrimely true.  
(DIF  $M = 1$ , then  $14$  chrimely true.  
(DIF  $M = 1$ , then  $14$  chrimely true.  
(Chainely true)  
 $f \in \mathbb{R}[a, c_{E}] \cap \mathbb{R}[c_{E}, C_{en}] \implies f \in \mathbb{R}[a, C_{E}],$   
let  $m = k+1$ , then by assumption  $\int_{a}^{c} f = \sum_{i=1}^{k} \int_{C_{i}}^{C_{i}} f$   
by additivity theorem,  
 $f \in \mathbb{R}[a, c_{E}] \cap \mathbb{R}[c_{E}, C_{en}] \implies f \in \mathbb{R}[a, C_{E+1}] = \mathbb{R}[a, b]$   
and  $\int_{a}^{b} f = \int_{a}^{C_{i}} f + \int_{C_{E}}^{C_{E}} f = \sum_{i=1}^{k} \int_{C_{i}}^{C_{i}} f = \int_{a}^{C_{i}} f + \int_{C_{E}}^{C_{E}} f = \sum_{i=1}^{k} \int_{C_{i}}^{C_{i}} f = \int_{a}^{C_{i}} f + \int_{C_{E}}^{C_{E}} f = \sum_{i=1}^{k} \int_{C_{i}}^{C_{i}} f = \int_{a}^{C_{i}} f = \int_{C_{E}}^{C_{i}} f = \int_{C_{i}}^{C_{i}} f = \int$ 



RTa, b] C LTa, b] C HKTa, b] A introduced in MATH 4050 OF MATH 5011 or defined as {feltKTa, b] | fieltKTa, b] }.

If you want to give a definition of integrable  
named by yourself, the definition should at  
least satisfy: (AXIDMS of integration).  
(D) Continuous functions are integrable on any [a.b].  
(D) 
$$\int_{a}^{b} 1 dx = b - a$$
  
(D)  $\int_{a}^{b} 1 dx = b - a$   
(D)  $\int_{a}^{b} (f+g) dx = \int_{a}^{b} f dx + \int_{a}^{b} g dx$ ,  $\int_{a}^{b} cf dx = c \int_{a}^{b} f dx$ .  
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{a} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx + \int_{c}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx + \int_{a}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx + \int_{a}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx + \int_{a}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx$   
(D)  $\int_{a}^{b} f dx = \int_{a}^{b} f dx$   
(D)  $\int_{a}^{b} f dx$   
(D)